快速开始
在不到 5 分钟内开始使用 Agno-Go!
前置要求
- Go 1.21 或更高版本
- OpenAI API 密钥 (或 Anthropic/Ollama)
- 对 AI Agent 的基本了解
安装
方式 1: 使用 Go Get
bash
go get github.com/rexleimo/agno-Go
方式 2: 克隆仓库
bash
git clone https://github.com/rexleimo/agno-Go.git
cd agno-Go
go mod download
您的第一个 Agent
1. 简单 Agent (无工具)
创建文件 main.go
:
go
package main
import (
"context"
"fmt"
"log"
"os"
"github.com/rexleimo/agno-Go/pkg/agno/agent"
"github.com/rexleimo/agno-Go/pkg/agno/models/openai"
)
func main() {
// Get API key from environment
apiKey := os.Getenv("OPENAI_API_KEY")
if apiKey == "" {
log.Fatal("OPENAI_API_KEY environment variable is required")
}
// Create OpenAI model
model, err := openai.New("gpt-4o-mini", openai.Config{
APIKey: apiKey,
})
if err != nil {
log.Fatalf("Failed to create model: %v", err)
}
// Create agent
ag, err := agent.New(agent.Config{
Name: "Assistant",
Model: model,
Instructions: "You are a helpful assistant.",
})
if err != nil {
log.Fatalf("Failed to create agent: %v", err)
}
// Run agent
output, err := ag.Run(context.Background(), "What is the capital of France?")
if err != nil {
log.Fatalf("Agent run failed: %v", err)
}
fmt.Println("Agent:", output.Content)
}
运行:
bash
export OPENAI_API_KEY=sk-your-key-here
go run main.go
预期输出:
Agent: The capital of France is Paris.
2. 带工具的 Agent
添加计算器工具:
go
package main
import (
"context"
"fmt"
"log"
"os"
"github.com/rexleimo/agno-Go/pkg/agno/agent"
"github.com/rexleimo/agno-Go/pkg/agno/models/openai"
"github.com/rexleimo/agno-Go/pkg/agno/tools/calculator"
"github.com/rexleimo/agno-Go/pkg/agno/tools/toolkit"
)
func main() {
apiKey := os.Getenv("OPENAI_API_KEY")
if apiKey == "" {
log.Fatal("OPENAI_API_KEY required")
}
// Create model
model, _ := openai.New("gpt-4o-mini", openai.Config{
APIKey: apiKey,
})
// Create agent WITH tools
ag, _ := agent.New(agent.Config{
Name: "Calculator Agent",
Model: model,
Toolkits: []toolkit.Toolkit{
calculator.New(),
},
Instructions: "You are a math assistant. Use the calculator tools for calculations.",
})
// Ask a math question
output, _ := ag.Run(context.Background(), "What is 123 * 456 + 789?")
fmt.Println("Question: What is 123 * 456 + 789?")
fmt.Println("Agent:", output.Content)
}
运行:
bash
go run main.go
预期输出:
Question: What is 123 * 456 + 789?
Agent: The result is 56,877
3. 多轮对话
添加记忆功能进行对话:
go
package main
import (
"bufio"
"context"
"fmt"
"log"
"os"
"strings"
"github.com/rexleimo/agno-Go/pkg/agno/agent"
"github.com/rexleimo/agno-Go/pkg/agno/models/openai"
)
func main() {
apiKey := os.Getenv("OPENAI_API_KEY")
if apiKey == "" {
log.Fatal("OPENAI_API_KEY required")
}
model, _ := openai.New("gpt-4o-mini", openai.Config{
APIKey: apiKey,
})
ag, _ := agent.New(agent.Config{
Name: "Chat Assistant",
Model: model,
Instructions: "You are a friendly chatbot. Remember context from previous messages.",
})
fmt.Println("Chat Assistant (type 'quit' to exit)")
fmt.Println("=====================================")
scanner := bufio.NewScanner(os.Stdin)
for {
fmt.Print("\nYou: ")
if !scanner.Scan() {
break
}
input := strings.TrimSpace(scanner.Text())
if input == "quit" || input == "exit" {
fmt.Println("Goodbye!")
break
}
if input == "" {
continue
}
// Run agent (memory is automatically maintained)
output, err := ag.Run(context.Background(), input)
if err != nil {
fmt.Printf("Error: %v\n", err)
continue
}
fmt.Printf("Agent: %s\n", output.Content)
}
}
示例对话:
You: My name is Alice
Agent: Nice to meet you, Alice! How can I help you today?
You: What's my name?
Agent: Your name is Alice!
You: quit
Goodbye!
使用 AgentOS (HTTP 服务器)
1. 启动服务器
使用 Docker Compose (推荐)
bash
# Copy environment template
cp .env.example .env
# Edit .env and add your API key
nano .env # Add: OPENAI_API_KEY=sk-your-key
# Start server
docker-compose up -d
# Check health
curl http://localhost:8080/health
使用 Go (原生)
bash
# Build server
go build -o agentos cmd/server/main.go
# Run server
export OPENAI_API_KEY=sk-your-key
./agentos
2. 使用 API
健康检查
bash
curl http://localhost:8080/health
响应:
json
{
"status": "healthy",
"service": "agentos",
"time": 1704067200
}
运行 Agent
bash
curl -X POST http://localhost:8080/api/v1/agents/assistant/run \
-H "Content-Type: application/json" \
-d '{
"input": "What is 2+2?"
}'
响应:
json
{
"content": "2 + 2 equals 4.",
"metadata": {
"agent_id": "assistant"
}
}
查看 AgentOS API Reference 获取完整的 API 文档。
下一步
了解更多
- Core Concepts - 理解 Agent、Team、Workflow
- Tools Guide - 了解内置和自定义工具
- Models Guide - 多模型支持
- Advanced Topics - 架构、性能、部署
尝试示例
所有示例都在 cmd/examples/
目录中:
bash
# Simple agent with calculator
go run cmd/examples/simple_agent/main.go
# Anthropic Claude
go run cmd/examples/claude_agent/main.go
# Local models with Ollama
go run cmd/examples/ollama_agent/main.go
# Multi-agent team
go run cmd/examples/team_demo/main.go
# Workflow engine
go run cmd/examples/workflow_demo/main.go
# RAG with ChromaDB
go run cmd/examples/rag_demo/main.go
查看 Examples 获取每个示例的详细文档。
故障排除
常见问题
1. "OPENAI_API_KEY not set"
bash
export OPENAI_API_KEY=sk-your-key-here
2. "Module not found"
bash
go mod download
go mod tidy
3. "Port 8080 already in use"
在 .env
或配置中更改端口:
bash
AGENTOS_ADDRESS=:9090
4. "Context deadline exceeded"
增加超时时间:
bash
export REQUEST_TIMEOUT=60
获取调试日志
bash
export AGENTOS_DEBUG=true
export LOG_LEVEL=debug
快速参考
常用导入
go
import (
"github.com/rexleimo/agno-Go/pkg/agno/agent"
"github.com/rexleimo/agno-Go/pkg/agno/models/openai"
"github.com/rexleimo/agno-Go/pkg/agno/tools/calculator"
"github.com/rexleimo/agno-Go/pkg/agno/team"
"github.com/rexleimo/agno-Go/pkg/agno/workflow"
"github.com/rexleimo/agno-Go/pkg/agentos"
)
Agent 创建模板
go
model, err := openai.New("gpt-4o-mini", openai.Config{
APIKey: os.Getenv("OPENAI_API_KEY"),
})
ag, err := agent.New(agent.Config{
Name: "Agent Name",
Model: model,
Toolkits: []toolkit.Toolkit{/* tools */},
Instructions: "System instructions",
MaxLoops: 10,
})
output, err := ag.Run(context.Background(), "input")
下一步: 核心概念
了解三个核心抽象: